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Rapid Note

Wavefunctions for the Luttinger liquid
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Abstract. Standard bosonization techniques lead to phonon-like excitations in a Luttinger liquid (LL),
reflecting the absence of Landau quasiparticles in these systems. Yet in addition to the above excitations
some LL are known to possess solitonic states carrying fractional quantum numbers (e.g. the spin 1/2
Heisenberg chain). We have reconsidered the zero modes in the low-energy spectrum of the Gaussian
boson LL Hamiltonian both for fermionic and bosonic LL: in the spinless case we find that two elementary
excitations carrying fractional quantum numbers allow to generate all the charge and current excited
states of the LL. We explicitly compute the wavefunctions of these two objects and show that one of
them can be identified with the 1D version of the Laughlin quasiparticle introduced in the context of the
Fractional Quantum Hall effect. For bosons, the other quasiparticle corresponds to a spinon excitation. The
eigenfunctions of Wen’s chiral LL Hamiltonian are also derived: they are quite simply the one dimensional
restrictions of the 2D bulk Laughlin wavefunctions.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) –
71.27.+a Strongly correlated electron systems; heavy fermions

Many one dimensional gapless quantum systems admit
a low-energy effective description similar to that of the
Tomonaga-Luttinger model. This led Haldane to propose
the phenomenology of the Luttinger liquid (LL) to de-
scribe these models [1]. Luttinger liquids are quantum crit-
ical theories and in the language of conformal field theories
(CFT) they are said to belong to the c = 1 universality
class [2]. The Gaussian boson Hamiltonian is a member of
that class, which helps explain why the LL phenomenology
is in essence that of an harmonic acoustic Hamiltonian.
An important property of the LL is the absence of Lan-
dau quasiparticles [3]: it is therefore often believed that
the only relevant excitations in a LL are phonons. Yet
let us consider the Heisenberg spin chain which is a well
known LL [4]; from Bethe ansatz one finds indeed that
∆S = 1 excitations are not magnons, in line with the
expectation that there are no Landau quasiparticles in a
LL. In fact ∆S = 1 excitations consist of two spin one-half
spinons forming a continuum [5]. It is important to stress
that spinons are fractional excitations of a spin chain (i.e.
carrying fractional quantum numbers) since ∆S must be
an integer for physically allowed excitations: this is quite
clear if we perform Jordan-Wigner or Holstein-Primakov
transformations on the spin Hamiltonian because then a
spin ∆S = 1/2 excitation becomes a charge Q = 1/2 exci-
tation in a model for fermions or bosons. Yet it is notewor-
thy that there exists no first principle derivation of frac-
tional excitations within the framework of the LL which
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maps given models onto the LL Gaussian boson Hamil-
tonian. The description in the standard -non chiral- LL
should be contrasted with that of Wen’s chiral LL, a vari-
ant of the former LL, used to describe edge states for the
Fractional Quantum Hall Effect (FQHE) [6] where besides
phonons one has fractional charge excitations: the Laugh-
lin quasiparticles. Actually a first step aiming at including
other types of excitations besides phonons for non-chiral
LL was taken by Haldane in his own rigorous solution
of the Tomonaga-Luttinger model, which yielded neutral
collective density modes (phonons) plus charge and cur-
rent excitations [1]. The latter excitations are generated
by the zero mode part of the boson Hamiltonian and are
customary in CFT [2]. In the non-interacting case Lan-
dau quasiparticles created at ±kF are exact eigenstates of
these zero modes; however they are not elementary exci-
tations any more when interactions are turned on.

Our paper revisits those charge and current excita-
tions for the generic (non-chiral) LL boson Hamiltonian.
Due to chiral separation these charge and current exci-
tations split into two independent chiral components, a
property familiar from CFT; we will show that each of
these chiral components must be viewed as a composite
excitation built from two elementary fractional objects.
One of these elementary excitations will be shown to be a
Laughlin quasiparticle [7]; this will be established by com-
puting the ground state and excitations eigenfunctions for
the LL boson Hamiltonian: we will prove that the ground
state and one of the elementary excitations have wave-
functions which are the 1D analogs of FQHE Laughlin
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wavefunctions. The nature of the other elementary excita-
tion depends on whether one considers fermions or bosons:
for bosons (and spins), we recover a charge one-half object
(the spinon) while for fermions we end up with a novel ob-
ject coming from the decay of the electron. We will also
derive the eigenfunctions for Wen’s chiral LL for the case
of filling fractions ν = 1/(2n+ 1).

The Gaussian boson Hamiltonian is just a sum of har-
monic oscillators so that the determination of the ground
state and of its excitations is easy:

HB =
u

2

∫ L

0

dx K−1(∇Φ)2 +K(∇Θ)2 (1)

where Θ and Π = ∇Φ are canonical conjugate boson
fields, j = 1√

π
∇Θ and δρ = − 1√

π
∇Φ (j and δρ are respec-

tively the particle current density and the particle density
operators) and where ΨB = ρ1/2 exp(i

√
πΘ) for bosons,

and ΨF = ΨB(exp(ikF r − i
√
πΦ) + exp(−ikF r + i

√
πΦ))

for fermions (we have multiplied ΨB by a Jordan-Wigner
phase). u and K are the usual LL parameters [1]. The
Fourier-transform of HB is:

HB =
u

2

∑
q 6=0

K−1ΠqΠ−q +Kq2ΘqΘ−q

+
πu

2L

(
Q̂2

K
+KĴ2

)
(2)

where q is quantized as qn = 2πn/L, Q̂ and Ĵ are the
charge and the current number operators. In the ground
state, HB reduces to a sum of harmonic oscillators (since
Q = 0 = J); therefore the ground state is just a Gaussian:

Ψ0 = exp

− 1

2K

∑
n6=0

1

|qn|
ΠnΠ−n

 (3)

returning to the original variables through Πq =√
π/Lρq =

√
π/L

∑
i exp(iqri), we find that Ψ0 is nothing

but a Laughlin wavefunction!

Ψ0({r1,..,rN0}) =
∏
i<j

|zij |
1/K . (4)

(We have defined zi = exp i2πri/L and zij = zi−zj.) This
is the correct form if we consider bosons; for fermions,
we undo the singular (Jordan-Wigner) gauge transfor-
mation converting fermions to hard-core bosons so that

ψF0 =
∏
i<j (zij) |zij |

1/K−1 exp iπN−1
L

∑
ri. This deriva-

tion of the ground state follows exactly the same lines
as that for the bosonic Landau-Ginzburg theory for the
FQHE [8]. We note that equation (4) is also the ex-
act ground state of the Calogero-Sutherland model [9];
the square modulus of the ground state functional of the
Thirring model was also shown to be similar [10]. These
simple results give a formal justification to the heuristic
connection between 2D Laughlin wavefunctions and con-
formal blocks of CFTs [11]. One class of excited states cor-
responds to neutral (phonon-like) modes for which Q = 0
and J = 0. We find that the wavefunctions are simply
Hermitte polynomials:∣∣nq1 , nq2 , ..., nqp〉 =

p∏
s=1

Hnqs

( ∑
i z
qs
i√

LK |qs|

)
|Ψ0〉 (5)

We now focus on excitations with non-zero values for Q
and/or J . They were first singled out by Haldane in his
rigorous approach to the Tomonaga-Luttinger model, and
are standard in CFT. Such excitations are obtained from
the vertex operators (the primary operators of the CFT)
[2,3]:

VQ,J(x) =: exp i
√
π (JΦ(x)−QΘ(x)) : (6)

where
[
Q̂, VQ,J

]
= QVQ,J and

[
Ĵ , VQ,J

]
= JVQ,J . It fol-

lows from the periodicity requirement for the fields ΨB

and ΨF that for bosons J must be an even integer while
for fermions Q−J is even (both Q and J are integers) [1].
We define also VQ,J(kn) which carries a momentum kn:
VQ,J(kn) =

∫
dx exp−i(kn − kFJ)x VQ,J (x). In the non-

interacting case (K = 1) VQ,J(kn) simply describe Q Lan-
dau quasiparticles. (The bosonization formulas show in-
deed that the electron is V1,±1.) However when K 6= 1
Landau quasiparticles are not elementary excitations any
more (as suggested by the absence of quasiparticle poles in
the electron Green function [3]): the paradigm set by the
Heisenberg spin chain suggests that VQ,J (kn)|0 > decays
into fractional excitations, much as the magnon is seen to
be replaced by two spinons. This fractionalization of the
spectrum of charge and current excitations of a LL is a
direct consequence of the chiral separation of the boson
Hamiltonian: HB = H+ + H−, and we summarize some
known results below [2,3]:

Hε =
u

4

∑
n6=0

Kq2
n(−εK−1Φn +Θn)2 +

πu

LK
Q̂2
ε (7)

where Q̂ε =
(
Q̂+ εKĴ

)
/2 are chiral charges; Φ± = Φ∓

KΘ are free chiral fields: Φ±(x, t) = Φ±(x ∓ ut). It is
easy to check that H+ and H− commute; that property
is routinely used in CFT. We also introduce Θ± = Θ∓ Φ

K
which are free fields. In terms ofΘ± the charge and current
excitation operators VQ,J read:

VQ,J(x) = exp−i
√
πQ+Θ+ exp−i

√
πQ−Θ−. (8)

When one adds Q electrons (or bosons) to the system, one
gets therefore two counter-propagating parts carrying re-
spectively a charge Q+ and a charge Q−. We define chiral
excitation operators:

W±Q±(x) = exp−i
√
πQ±Θ± (9)

which create a charge Q± (indeed
[
Q̂, exp−i

√
πQ±Θ±

]
= Q± exp−i

√
πQ±Θ±) and are easily shown to obey any-

onic commutation relations with statistics: ∓πQ2
±/K [12].

The exponential in the Fourier transform W±Q±(kn) can

be expanded as the product of a zero mode part and of
muti-phonon processes, which shows W±Q±(kn) is an exact

eigenstate of H± [12]. Such an analysis in terms of chiral
separation which is standard for conformal field theorists
implies that even for a spinless LL there is a fractionaliza-
tion of the electron with in general non-integral charge ex-
citations (sinceQ± is not in general an integer), a fact gen-
erally not sufficiently appreciated in the condensed matter
community.
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After that summary, we now establish novel results
concerning the elementary excitations for a non-chiral
LL1. For the above chiral excitations we would like to
find a basis of elementary excitations, i.e. identify objects
from which all the other excitations can be built. We must
carefully distinguish between Bose and Fermi statistics be-
cause of the constraints on Q and J . Let us consider first
bosons: since J is even we can rewrite it as J = 2n where
n is an arbitrary integer. But then for bosons:

(Q+, Q−) =

(
Q+KJ

2
,
Q−KJ

2

)
= Q

(
1

2
,

1

2

)
+ n (K,−K) . (10)

For bosons a general excitation is therefore constructed

by applying
(
W±1/2

)Q (
W±±K

)n
to Ψ0, where Q and n are

independent integers of arbitrary sign, which means that
W±1/2 and W±±K are elementary excitations. (Going back

to reciprocal space this means that the exact eigenstate

W±Q±(k0) is built from states
∏Q
i=1W

±
1/2(qi)

∏n
j=1W

±
K (q̃j)

where k0 =
∑
i qi +

∑
j q̃j .) These two types of ele-

mentary excitations are generated in the following pro-
cesses: (i) adding one particle into the LL but no current
(Q = 1, n = J/2 = 0) results in two (chiral) charge 1/2
objects (with statistics π/4K [12]), moving with oppo-
site velocities u, namely W±1/2; in spin problems (spins

are hard-core bosons) W±1/2 is naturally interpreted as

a S = 1/2 spinon; (ii) creating current without addi-
tion of a particle (Q = 0, n = 1) results in charges
K and −K moving with opposite velocities u. To iden-
tify the nature of these objects we compute for instance
W+
K (z)Ψ0 in first quantization; using equation (4) and

exp−i
√
πQΘ(x) = expQ δ

δρ(x) gives:[
expQ

δ

δρ(x)

]
exp

1

2K

∫ ∫
ρ(y) ln

∣∣∣sin π
L

(y − y′)
∣∣∣ ρ(y′)

= exp
Q

K

∫
ρ(y) ln

∣∣∣sin π

L
(y − x)

∣∣∣dyΨ0

= C
∏
i

|zi − z|
Q/K Ψ0 (11)

(C is an unessential constant). Since exp i
√
πJΦ(x) =

exp iπJ
∫ L

0
θ(x − y)δρ(y)dy where θ(x) = 1

iπ
ln[ (−x)

|x| ] is

the step function, exp i
√
πJΦ(x) =

∏
i [(zi − z) / |zi − z|]

J

exp−iJkF(2x+
∑
i ri/N). Thus

W+
K (x)Ψ0 =

∏
i

(zi − z)
∏
i<j

|zij |
1/K exp−ikF

(
2x+

∑
i ri

N

)
(12)

This leads us to identify W+
K with a Laughlin quasipar-

ticle; the charge deduced from a plasma analogy is of
course K in agreement with the above considerations. A

1 For notational convenience we will work in direct space
as is customary in CFT, the relevant exact excitations being
obtained by Fourier transform.

simple argument may allow to appreciate the full paral-
lel between the way Laughlin quasiparticles are gener-
ated in the FQHE and in a (non-chiral) LL. Laughlin
showed that insertion of a flux quantum creates a frac-
tionally charged Laughlin quasihole in the bulk [7]; by
charge conservation the opposite charge is created at the
edge [13]. We now show that threading flux in a LL ring
also leads to the creation of a Laughlin quasiparticle–
quasihole pair. Insertion of flux φ leads to the replacement
πu
2LKĴ

2 −→ πu
2LK

(
Ĵ + 2 φ

φ0

)2

in equation (2) [14]. When

φ = φ0 the energy is minimized for J = −2 and the state
is V0,−2 = exp−i2

√
πΦ. This is a (Q = 0, J = −2) process

which by the previous analysis corresponds to the creation
of W+

K and W−−K a Laughlin quasiparticle–quasihole pair.
This is entirely analogous to Laughlin’s thought experi-
ment. We note that Fisher and Glazman had previously
argued for the existence of charge K Laughlin quasiparti-
cles in a LL, but their argument was heuristic, relying on a
study of backscattering by a barrier in a LL [15], while the
existence of charge K elementary excitations was derived
in this paper from first principles. Since fractional charge
does not mean Laughlin quasiparticle (charge 1/3 solitons
were known from Su and Schrieffer’s work on charge den-
sity waves [16]), it is also necessary to prove that these
charge K objects actually are genuine Laughlin quasipar-
ticles: this was established in our computation of the wave-
function for W+

K .

Let us illustrate these results on the specific example
of the anisotropic Heisenberg XXZ spin chain. It is cru-
cial to choose the right selection rules for Q and J : either
bosonic or fermionic; here the correct ones are the bosonic
ones because S = 1/2 spins are bosons (spins are not
Jordan-Wigner fermions due to the string factor). Then
consider spin transitions: ∆S = 1 (i.e. Q = 1, J = 0);
when we vary the anisotropy we observe a continuum of
excitations which can be identified with spinons. This is
recovered easily: indeed for Q = 1, J = 0 the previous re-
sults show that we generate W+

1/2 and W−1/2. (Note that

at the isotropic point for which K = 1/2 our spin half
W+

1/2 has a semionic statistics π/2 but in general its ex-

change statistics is π/4K [12]. The spinon operator and
its exclusion statistics have been considered in the SU(2)
symmetric case – the isotropic point – in [17].) The spinon
operator W+

1/2 upon acting on the ground state yields

W±1/2(z)Ψ0 =
∏
i

(zi − z)
1/2K

∏
i<j

|zij |
1/Ke−

ikF
2K (2x+

∑
i ri/N).

(13)

Besides spinons we have the novel result that there should
also be spin K Laughlin quasiparticles generated by spin
currents. Imposing a twist in the boundary conditions
will give rise to a Laughlin quasiparticle–quasihole pair
of charge ±K. We note that for the special case K = 1/2
(the isotropic Heisenberg chain, or boson self-dual point)
elementary excitations consist solely of spinons and anti-
spinons.
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We now turn to fermions and we may writeQ−J = 2n.
Then for fermions :

(Q+, Q−) = Q

(
1 +K

2
,

1−K

2

)
− n (K,−K) (14)

Once again we may take (Q = 1, n = 0); this corresponds
to chiral charges 1−K

2 and 1+K
2 moving at velocities −u

and u respectively. The total current is uK (in units of
kF): indeed n = 0 implies J = 1, highlighting the fact
that for fermions elementary excitations may mix charge
and current states. Another generator is obtained with
(Q = 0, n = 1): it is a pure current state made out
of counterpropagating Laughlin quasiparticle (+K) and
anti-particle (−K). Note that in the non-interacting case
(K = 1) these quasiparticles reduce to bare particles pop-
ulating states near ±kF. The general excitation is again
built by creating an integer number of times W±1±K

2

and/or

W±±K states which precisely means that we have identified
a set of elementary excitations for the fermionic LL.

The elementary excitations we have derived form a
basis from which all charge and current excitations are
obtained; by no means are they the only choice of basis:
other bases of elementary excitations are obtained by con-
sidering base changes matrices with integer entries whose
inverses are also integer-valued, which ensures that all ex-
citations are integral linear combinations of the elemen-
tary excitations. For instance for fermions another basis
is W±1±K

2

and W±1 :

(Q+, Q−) = J

(
1 +K

2
,

1−K

2

)
+ n (1, 1) (15)

it is actually a basis dual to the previous one (obtained
under exchanges of K ←→ 1/K and Φ←→ Θ).

Turning to Wen’s chiral LL for the filling fraction
ν = 1/(2n + 1) using Wen’s modified expression for
the electron operator Ψ = exp i(2n + 1)ϕ and H =
2π(2n + 1)

∑
k>0 ρkρ−k (with ρ = 1

2π∇ϕ) one finds the

ground state ψ0 =
∏
i<j (zij)

2n+1
exp−ikF

∑
rj which

up to a current term is just the 1D restriction of Laugh-
lin bulk wavefunction; similarly the fractional charge ex-
citation exp iϕ/(2n+ 1) yields the wavefunction

∏
i(zi −

z)
∏
i<j(zi − zj)

2n+1. To our knowledge this is the first
time the wavefunctions of Wen’s chiral LL are directly
computed from the Hamiltonian: while a heuristic con-
nection had already been made between Laughlin’s bulk
wavefunctions and 1D edge theories (2D bulk wavefunc-
tions as conformal blocks of 1+1D CFTs), we believe our
results make the relation quite transparent.

The previous discussion can be generalized to the LL
with spin; one should consider multicomponent Laughlin
wavefunctions ψ0({ri, σi}) =

∏
i<j |zij |

gσi,σj . The discus-
sion of charge and current excitations in a spinful LL then
parallels the spinless case; in the case of spin-charge sep-
aration one finds a basis of four elementary excitations
among which a charge one holon and a spin half spinon,
as well as “Laughlin holons” carrying a charge Kc and
“Laughlin spinons” with spin Ks/2.

Experimental observation of the various fractional ex-
citations considered in this paper is of course an impor-
tant issue in the extent that there are several candidates
for a realization of the LL: quasi-1D organics, quantum
wires, gapless spin chains, quantum Hall edge states [3];
an intriguing possibility might also be chiral edges of com-
pressible phases of the 2D electron gas in between Hall
plateaux [18]. Relevant probes could be as in the FQHE
shot noise experiments or resonant tunneling [19]. We
summarize the novel results obtained in the present paper:
we have identified the elementary excitations of the LL,
which are fractional objects (carrying fractional charges);
by computing their wavefunctions we have found that one
of them is identified as a Laughlin quasiparticle and is
generated by current excitations in a LL. This property
is a natural consequence of the fact that the ground state
of the LL boson Hamiltonian is nothing but a Laughlin
wavefunction. We have also computed the eigenfunctions
for Wen’s chiral LL at filling fractions ν = 1/(2n + 1)
which are just the one dimensional restrictions of the 2D
bulk states.

The authors thank B. Jancovici, D. Bazzali for interesting dis-
cussions, as well as the Orsay theory group, and especially T.
Giamarchi and Heinz Schulz for their comments.
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